
A Content-Based Recommendation System Using
Neuro-Fuzzy Approach

1st Tomasz Rutkowski
Senfino Technologies

Warsaw, Poland
tomasz.rutkowski@senfino.com

2nd Jakub Romanowski
Senfino Technologies

Czestochowa, Poland
jakub.romanowski@senfino.com

3rd Piotr Woldan
Senfino Technologies

Czestochowa, Poland
piotr.woldan@senfino.com

4th Paweł Staszewski
Senfino Technologies

Czestochowa, Poland
pawel.staszewski@senfino.com

5th Radosław Nielek
Polish-Japanese Academy of Information Technology

Warsaw, Poland
nielek@pjwstk.edu.pl

6th Leszek Rutkowski, Fellow, IEEE
Institute of Computational Intelligence
Czestochowa University of Technology

Czestochowa, Poland,
and Information Technology Institute,

University of Social Sciences,
90-113 Lodz, Poland

leszek.rutkowski@iisi.pcz.pl

Abstract—In this paper, we present our novel approach to
recommender systems based on a neuro-fuzzy approach. The
neuro-fuzzy approach allows for deciding to recommend or not
to recommend processed items for a user. By using it, we can
understand the decision through analyzing rules of decision
paths. Our method gives a possibility to learn and simulate users
decisions based on their actions in our test environment. Finally,
a rank list of top-rated items is delivered to the user based on
simulated rank for each of them. We develop our AI framework
to perform tests with the use of CUDA technology. Additionally,
we develop a user interface in the form of a web application.
It gives the possibility to perform simulations of real users. To
compare our approach with a deep learning based method, we
perform tests on the MovieLens 20M Dataset. It should be noted
that the architecture of the data module of our system allowed
for reasonably easy integration with MovieLens data.

Index Terms—recommendation systems, neuro-fuzzy structure,
MovieLens Dataset

I. INTRODUCTION

In the world of multimedia and the growing amount of
electronic services, the choice of suitable products has become
a troublesome and time-consuming issue. Due to the high
availability of products or services, choosing a movie to watch,
a mobile phone or a car that meets all of the requirements
consumes a considerable amount of time. As a result, time
becomes the greatest value for a human being; moreover,
its saving gains an appropriate value. The solution to this
problem became recommendation systems. An appropriately
tailored recommendation system for a specific industry allows
for presenting an offer corresponding to the user preferences.
In recent years, many recommendation systems for multimedia
such as music, photos or films have been created [1] [2] [3].

This work is partially supported by Polish National Science Centre grant
2015/19/B/ST6/03179

Recommendation systems have touched on other spheres of
life like corporate media or the scientific world [4] [5] [6].
Such systems are becoming ubiquitous in every area of life.
The preferences and values resulting from the users behavior
in the system allow for classifying him to a corresponding
user model. Despite information about the users preferences
and his context in a given recommendation system, one of
the most valuable information is the rating of the presented
product. The rating gives information to the system about how
much the presented product is appropriate for a given user and
should be treated as having an explicit impact [7].

A recommendation system is any system that offers items
in a personalized way to a specific user or guides him to the
product best suited to his profile [8] [9] [10]. In the literature
several techniques for building recommendations systems have
been developed including:

• collaborative filtering - it is the most commonly imple-
mented technique [11]. Such systems recommend items
by identifying other users with similar taste. Recommen-
dation of new items is based on user-user, user-item,
or item-item similarities. The major problem with this
technique is known under the name cold start - the system
cannot draw any inferences for users or items about which
it has not collected enough information.

• content-based techniques - the recommender attempts to
recommend items similar to those a given user preferred
in the past [12]. In this case, the recommendations are
based on information on the content of a given item, not
on other users’ opinion as in the case of collaborative
filtering. These techniques are vulnerable to overfitting,
but their great advantage is not needed for data on other
users [13].

• hybrid approach - it relies on a combination of many
different recommendation methods [14]. The final goal
of this approach is to obtain the most accurate list of
predictions and as a result, a more precise specification
of the user’s profile.

To improve the effectiveness of recommendation systems,
techniques based on complementing the thematic information
data sets from external databases are often used. It allows
for a more accurate perception of the problem. An additional
knowledge database may contain information from websites,
external APIs [15] [16], data from charts, information col-
lected from experts, statistical data [17], etc.
One way to facilitate the recommendation process is to prop-
erly model input data. Preparation of data in the appropriate
format can significantly improve the processing in the rec-
ommendation system. The most commonly used methods are
described in [18] and [19].
Without any doubt, almost all recommendation systems de-
veloped in the literature are focused on providing the highest
accuracy of prediction. Consequently, recommender systems
sacrifice their interpretability in favor of a correct rating.
However, in many situations, we would like to understand why
a certain recommendation has been made.
Motivated by the above discussion, this paper presents a new
content-based recommendation system developed by imple-
menting a neuro-fuzzy approach leading to interpretable rec-
ommenders. By properly performing pre-processing of lexical
data (e.g. movie genres) and transforming them into values of
linguistic variables, we can construct a neuro-fuzzy system.
The initial fuzzy rules are generating using the Wang-Mendel
method [20], which divides the input space into fuzzy regions
and then applies a table-lookup scheme to extract interpretable
rules. The resulting system is fine-tuned, using the back propa-
gation method [21]. Parallely, we have also developed our im-
plementation of a deep-learning content-based recommender
system characterized by a very high accuracy but lack of
interpretability. The presented comparison results surprisingly
show that a not-interpretable deep-learning approach only
slightly outperforms the interpretable neuro-fuzzy approach.
To our best knowledge, the method presented in this paper is
the first successful implementation of neuro-fuzzy techniques
in content-based recommender systems.
Although this paper is concerned with a specific application
dealing with the MovieLens data, it has a great potential
to solve other problems, in particular when interpretability
is a very important matter. The remainder of this paper is
organized as follows. In Section 2, the recommender system
is described in details, including description of the neuro-fuzzy
structure, subsequent steps of the preprocessing stage and the
rule generation process. In Section 3, numerical simulations
are described to demonstrate the effectiveness of our approach.
Finally, conclusions are drawn in Section 4.

Fig. 1. The neuro-fuzzy structure

II. NEURO-FUZZY RECOMMENDER SYSTEM

A. Fuzzy system

In fuzzy systems, the rules base, see e.g. [22], sometimes
called a linguistic model, is a set of fuzzy rules R(k), for
k = 1, ..., N , of the form

R(k) : IF x1 is Ak
1 AND x2 is Ak

2 AND...AND xn is Ak
n

THEN y1 is Bk
1 AND y2 is Bk

2 AND...AND ym is Bk
m

where N is the number of fuzzy rules, Ak
i - fuzzy sets such

as

Ak
i ⊆ Xi ⊂ R, i = 1, ..., n,

Bk
j - fuzzy sets such as

Bk
j ⊆ Yj ⊂ R, j = 1, ...,m,

x1, x2, ..., xn - input variables of the linguistic model, while

[x1, x2, ..., xn]
T
= x ∈ X1 × X2 × ...× Xn,

y1, y2, ..., ym - output variables of the linguistic model,
while

[y1, y2, ..., ym]
T
= y ∈ Y1 × Y2 × ...× Ym.

Symbols Xi, i = 1, ..., n and Yj , j = 1, ...,m, denote the
spaces of input and output variables respectively. We assume
that particular rules R(k), k = 1, ..., N , are related to each
other using the ”or” logical operator. Moreover, in this paper
we assume that the output fuzzy sets are singletons. In the
paper fuzzy rules will be generated using a slight modification
of the Mendel-Wang method, see e.g. [21]. An exemplary
scheme of the neuro-fuzzy structure is shown in Fig. 1. For
a detailed description of various structures of neuro-fuzzy
systems the reader is referred to [22].

B. Preprocessing

The first of the neuro-fuzzy approach issues that we chal-
lenged was the description of nominal and numerical variables
in a unified manner. The major problem was how to transform
lexical values of nominal features, e.g., movies genres, to
be incorporated into the neuro-fuzzy structure design. To be

properly processed, the input data of the neuro-fuzzy system
should be values of linguistic variables. Numeric values are
normalized to the range 0-1.

In cases of nominal features, we analyze ranked samples of
the user and based on this, we calculate the rate of importance
for individual features. The example of transforming nominal
values into a numerical form is presented in Figs. 2 - 4, based
on the genres of films rated by one user. This stage of sample
processing is repeated for each nominal feature and each user.
Generated importances w, for each movie category, are base
values needed to generate an input signal to the system. This
stage contains the following steps:

1) Counting distinct genres relative to their positions in
negative and positive ranked samples. In this example,
we analyze occurrences of the genre up to the 3rd place,
see Fig. 2.

Fig. 2. Counting distinct genres from negative and positive ranked movies

2) Calculating weights for individual genres occurring in
positive and negative rated movies, see Fig. 3.

3) Generating the input value to the neuro-fuzzy system
based on the calculated weights and nominal values of
a movie, see Fig. 4.

C. Generation of fuzzy rules

After data preprocessing, there are several stages to build
neuro-fuzzy rules and to learn the system. For each linguistic
variable, there are prepared fuzzy sets with a location deter-
mined by the occurrence of variables. The domain intervals are
bounded by minimum and maximum of linguistic variables
values. If we consider the example of movies taking into
account movie release year and genres (see Fig.5), and a
decision to recommend it or not, there are several steps of
building fuzzy sets and rules:

1) The fuzzy sets building process is illustrated in the
example of movie release year and genres, as it is shown
in Fig. 6. In this example, the minimum year of movie
release is 1910, and the maximum is 2010. In the case of
genres values, the range is from 0 to 1, as it is explained
in point B, see also Figs. 3 and 4.

Fig. 3. Calculating weights

Fig. 4. Generating the input value to the neuro-fuzzy

Fig. 5. Exemplary samples for movie recommender

This example presents only negative recommendations
to assure readability of the figure. To build fuzzy sets
for this linguistic values, there is a need to set the
center of the first (1910) fuzzy set in minimal value
and the second (2010) in maximal value. The distance
between minimal and maximal linguistic value is a basis
for preparing the locations of centers of other fuzzy
sets by dividing it, e.g. into 11 fuzzy sets. Each of
the fuzzy sets is tested by linguistic variable values and
fuzzy sets for which the membership function value of
a given variable is lower than the threshold (near 0) are
excluded. This process is illustrated in Fig. 6 assuming
Gaussian membership functions.

Fig. 6. Visualization of linguistic variable fuzzy sets building process. In tests
environment, each fuzzy set is represented by Gaussian curves

2) The previous step should be executed for positive rec-
ommendations. In the final result, negative and positive
recommendations for movie release year represented by
appropriate fuzzy sets should be presented on the same
linguistic value axis.
For both positive and negative recommendations, each
of the fuzzy sets are prepared for the same linguistic
value. Their colors are visual representations of positive
and negative cases, see Fig. 7. This figure presents
the final stage of building fuzzy sets and rules showing
two linguistic variables and singletons describing the
recommendation. The procedure described above is a
slight modification of the Mendel-Wang algorithm [20],
originally developed for function approximation prob-
lems.

Fig. 7. Example of fuzzy-system with linguistic variables, rules between them
and final result in form of decision to recommend movie or not

III. EXPERIMENTAL RESULTS

A. Our AI framework for recommender systems

To perform tests, we developed our own AI framework.
The framework was developed in C++ programming language
using the NVidia technology called CUDA (Compute Unified
Device Architecture). CUDA allows us to develop much faster
algorithms by using GPU units comparing to traditional C++
with CPU-only calculations. The technologies which are used
in this part of the test environment are:

• CUDA Toolkit v9.0.176
• CUDNN v7
• BOOST v1.65.1 (vectors and logging features)

All of the data required to test are stored in the MS SQL
2016 database in the form of groups of features and features.
All items which could be recommended are described by
attributes and their values.

Our test environment is based on the components described
above. To perform the tests the following conditions are
required:

• User account
• This user should perform onboarding in the form of a

specified amount of assessment of items prepared for him
• User can set his profile preferences – which groups of

features and features he likes or dislikes
After this process, our AI framework is able to start sim-
ulations. Basing on the user’s onboarding ranked items and
preferences, the AI framework learns his rankings prediction.
The AI framework module then creates the simulated rank
for each of possible items. In the next step, a list of top
recommendations is prepared for the selected user. The list
is sorted in descending order by simulated rank value.

B. Data sets

Because of the need to compare our experimental results
with other methods, we decide to perform tests based on
the commonly known MovieLens database. It gives us the
possibility to benchmark and test our software and algorithms
on a significant amount of data. By using this data set, we can
test the accuracy and performance of our algorithms. This data
set is MovieLens 20M. The dataset is based on information

from MovieLens website, which is a non-commercial, person-
alized movie recommendations service. This dataset describes
movies by features like genres, year, tags and 5-star rating.
Additionally, there are external services movies IDs available,
e.g. (IMDB, TMDB). External movie IDs could be used to
connect with external services to obtain additional information
about movies, e.g., casts, keywords, directors, writers and main
stars [23].

The dataset contains 27278 movies, 20000263 ratings and
465564 tag applications and the first release of the database
was in 1998. The database was created by 138493 randomly
selected users, each of them rated from several dozens to
several hundred movies. Users are represented only by ID
without any sensitive information [23].
In our work, MovieLens 20M is the main data source for
movies; however, we decided to obtain much more information
from the TMDB API service. As a result, the MovieLens
dataset is extended by data from the TMDB API service,
and it allows obtaining much more efficient and much more
accurate results in the field of movies recommendation. As
additional data, apart from the genre of the movie, we take into
account such data as actors, contributor, description, keywords,
and spoken language. This allows us to build a better user
model based on his movie ratings. It should be noted that
in the vast majority of previous approaches, the authors used
the MovieLens 100K Dataset. In our simulations, the sizeable
MovieLens 20M was used to increase trustworthiness and thus,
our ability to draw conclusions. In the next two subsections,
we present a simulation result which can be a reference point
for researchers performing experiments with the MovieLens
20M dataset.

C. Neuro-fuzzy based recommender system

In this subsection, we present simulations performed with
the neuro-fuzzy structure described in the previous subsec-
tions. As the evaluation criterion, we use the Mean Absolute
Error (MAE) given by the following equation

1

n

n∑
i=1

|yi − zi| (1)

where n denotes a number of samples, and yi and zi stand
for predicted by our system and expected output, respectively.
This criterion was used to determine the effectiveness of 10
sample users.

At the testing stage, a recommendation score greater than
the threshold (in this simulation equal to 3,5 in the scale 1-5 of
possible movie ratings) indicates a positive recommendation,
while a score below the threshold, a position that should not
be recommended. The results of the testing phase are shown
in Table I.

Figure 8 presents the functioning of our system for two
linguistic variables (genres and actors). In Fig. 8a, fuzzy sets,
and consequently fuzzy rules, are built on the basis of the
method illustrated in Fig. 6, with initial fuzzy singletons at
the points 1,0 and 2,0. In Fig. 8b, we depicted fuzzy sets

TABLE I
NEURO-FUZZY MODULE EFFICIENCY FOR 10 USERS, MEASURED BY

VERIFYING IF ITEM WAS RECOMMENDED PROPERLY (YES OR NO VALUES)

MovieLens User ID Recognized (%)
100005 100%
100010 100%
100013 96,46%
100028 97,97%
100034 95,22%
100071 100%
100086 100%
100130 100%
100153 100%
100168 100%

TOTAL 98,97%

obtained after a training using the back propagation algorithm.
Fig. 8c shows the results of the fuzzy inference for the selected
user, for whom, using the method illustrated in Figs. 3 and 4,
the inputs of the recommender are equal to 0,498 (genres)
and 0,453 (actors). On this figure, we indicated two values
of fuzzy singletons at the points 0,97 and 2,04, leading to the
final defuzzyfied (crisp) output equal to 1,16. As the threshold
for a positive recommendation is 1,5, this specific item is
not recommended for the user. The MAE for the neuro-fuzzy
recommender is presented in Fig. 9.

D. Deep learning-based recommender system

The Convolutional Neural Network (CNN), see e.g. [24],
is one of the most well-known structures in deep learning.
This type of AI architecture is used especially in the field
of image processing [25]. The CNN can also be used in
natural language processing [26] and in many other applica-
tions. In this subsection, our implementation of the CNN in
recommender system is presented. Our software based on deep
learning structure is prepared for gaining knowledge about
the way how to rank movies by the each user. These ranks
are collected and grouped for different users, hence training
data is prepared. The system based on Deep Neural Network
mechanisms, analyses such movie attributes as: genres, casts,
directors, production companies and keywords. Before data
can be inputted to the neural network, one-hot encoding
preprocessing has to be done, see e.g. [27]. In this way, we
collect every ranked movie for each user. Next, we encode
every attribute from these samples and return vectors with
distinct values. As a result, training samples are determined.
After this phase, coding the testing database was performed.
It is done by comparing the attributes vectors used for training
with attributes in each group. In the first stage – propagating
signal forward in the neural network – the features extraction
is performed. It is done by using the CNN, which structure is
presented in Table II. The main goal to use CNN is to extract
features on different levels from encoded form.

The Multi-Layer Perceptron (MLP), connected to the CNN
structure, processes attributes vectors and calculates values of
the regression function as the output. Hence, the ReLU acti-

Fig. 8. Fuzzy inference in the recommender system

vation function is used. Architecture of the MLP is presented
in the Table III.

The entire CNN + MLP architecture was trained with
learning rate starting from 0.001. Learning rate was decreased
during training phase by dividing by ten after the 50th epoch.
The process ends after reaching of the 110th epoch. We used
the same formula as previously, see equation (1), for measuring
the effectiveness of the recommender. In this case, if the rank
value (a number in the interval 1-5) is predicted with the error

|yi − zi| < 0.1 then the recommendation is treated as
positive. The decrease of the MAE is presented in Fig. 10.

The DNN module was designed to determine the rating for
recommended items. Finally, this solution is used to build a
ranking list. Table IV presents the efficiency of DNN module.

To measure the efficiency of our approach, we select ranks
for 10 random users. Then we apply the cross-validation
method and get the results, which are shown in Table IV.

Fig. 9. MAE for the neuro-fuzzy system

TABLE II
STRUCTURE OF THE CNN USED FOR FEATURE EXTRACTION

Layer type Parameters
1 Convolutional channels: 32, kernel: 1x7, stride: 1x5, z-padding
2 Convolutional channels: 64, kernel: 1x5, stride: 1x2, z-padding
3 Pooling window: 1x3, stride: 1x1, type: avg with padding
4 Activation type: ReLU
5 Convolutional channels: 32, kernel: 1x3, stride: 1x1
6 Convolutional channels: 32, kernel: 1x5, stride: 1x1
7 Pooling window: 1x5, stride: 1x2, type: max
8 Activation type: ReLU

TABLE III
STRUCTURE OF THE MLP USED FOR REGRESSION

Layer type Parameters
1 Fully connected neurons: 50
2 Activation type: ReLU
3 Fully connected neurons: 10
4 Activation type: ReLU
5 Fully connected neurons: 1
6 Activation type: ReLU

Fig. 10. MAE for DNN approach

TABLE IV
DNN MODULE EFFICIENCY FOR 10 USERS, MEASURED BY VERIFYING

CORRECTNESS OF RANK PREDICTION (VALUES IN RANGE 1-5)

MovieLens User ID Recognized (%)
100005 100%
100010 100%
100013 100%
100028 100%
100034 100%
100071 100%
100086 100%
100130 96%
100153 100%
100168 100%

TOTAL 99,6%

E. Comparison of the neuro-fuzzy and deep learning ap-
proaches

The graph in Fig. 11 shows the decrease of the MAE during
learning the neuro-fuzzy system and the deep neural network
for 100 epochs. The rules in the neuro-fuzzy system were
built on the basis of training samples, which makes the error
much smaller in the initial phase of learning. For the DNN,
the initial error is very high due to the random selection of
weights, but after learning it is slightly smaller than in the
case of neuro-fuzzy approach. This is due to the multilayer
structure of deep neural networks, which allows for a better
learning of the model. All tests have been verified by the
cross-validation method in relation to the ratings of movies
provided by individual users. Each user has learned his own
model using the above-presented methods, which describes his
preferences extracted based on his ratings. In order to generate
a recommendation for a particular person, we first need to load
its model and then to evaluate the candidate samples. The
model can also be trained for a certain group of users who are
characterized by similar preferences, then the trained model
will be common to them. The MAE and the effectiveness of
methods presented in Table V was generated for a different
number of users. Slight fluctuations result from the number of
ranks provided by the users. Our approach for recommendation
is independent of the number of profiles.

Fig. 11. Error rate decrease

TABLE V
SUMMARY OF MAE AND EFFECTIVENESS OF NEURO-FUZZY (NF) AND

DNN IN RELATION TO THE NUMBER OF USERS

Effectiveness MAE
Users NF pre-train NF post-train DNN NF DNN
500 96,79% 98,69% 99,76% 0,03738 0,00332
1000 96,92% 98,80% 99,86% 0,03479 0,00197
1500 97,06% 98,82% 99,90% 0,03455 0,00145
2000 97,17% 98,84% 99,92% 0,03477 0,00121
2500 97,20% 98,85% 99,80% 0,03456 0,00504
3000 97,28% 98,87% 99,83% 0,03426 0,00427
3500 97,26% 98,88% 99,82% 0,03402 0,00412
4000 97,26% 98,87% 99,83% 0,03408 0,00366
4500 97,23% 98,86% 99,85% 0,03437 0,00332
5000 97,26% 98,87% 99,82% 0,03431 0,00369
5500 97,31% 98,88% 99,83% 0,03405 0,00339
6000 97,30% 98,87% 99,84% 0,03418 0,00313
6500 97,30% 98,87% 99,83% 0,03401 0,00325
7000 97,32% 98,88% 99,83% 0,03396 0,00329
7500 97,31% 98,88% 99,81% 0,03389 0,00357
8000 97,32% 98,88% 99,82% 0,03399 0,00336
8500 97,30% 98,87% 99,81% 0,03399 0,00334
9000 97,30% 98,88% 99,82% 0,03402 0,00318
9500 97,30% 98,87% 99,82% 0,03417 0,00322
10000 97,29% 98,87% 99,82% 0,03417 0,00325

IV. CONCLUSIONS

In this paper, we presented two approaches, based on
the neuro-fuzzy structure and the deep learning structures
applied to build recommender system. Performed simulations
demonstrated the very high accuracy of the recommender
based on deep neural networks. The recommender based on
neuro-fuzzy approach performs slightly worse; however, it
generates interpretable fuzzy rules. It should be emphasized
that, as it is shown in Table V, it has very good effectiveness,
in most cases above 97%, even before the backpropagation
training (fine-tuning) is applied. The recommenders based on
the neuro-fuzzy structure and DNN have their advantages and
disadvantages. A combination of both methods would lead to
high-quality recommenders with an option to explain to users
the reasoning behind the specific recommendation. This will
be the subject of our future research.

REFERENCES

[1] Z. Gantner, S. Rendle, and L. Schmidt-Thieme, “Factorization models
for context-/time-aware movie recommendations,” in Proceedings of the
Workshop on Context-Aware Movie Recommendation, ser. CAMRa ’10.
New York, NY, USA: ACM, 2010, pp. 14–19. [Online]. Available:
http://doi.acm.org/10.1145/1869652.1869654

[2] N. Aizenberg, Y. Koren, and O. Somekh, “Build your own music
recommender by modeling internet radio streams,” in Proceedings of
the 21st International Conference on World Wide Web, ser. WWW
’12. New York, NY, USA: ACM, 2012, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/2187836.2187838

[3] S. Bourke, K. McCarthy, and B. Smyth, “The social camera: A
case-study in contextual image recommendation,” in Proceedings of
the 16th International Conference on Intelligent User Interfaces, ser.
IUI ’11. New York, NY, USA: ACM, 2011, pp. 13–22. [Online].
Available: http://doi.acm.org/10.1145/1943403.1943408

[4] A. Chin, B. Xu, and H. Wang, “Who should i add as a ”friend”?:
A study of friend recommendations using proximity and homophily,”
in Proceedings of the 4th International Workshop on Modeling Social
Media, ser. MSM ’13. New York, NY, USA: ACM, 2013, pp. 7:1–7:7.
[Online]. Available: http://doi.acm.org/10.1145/2463656.2463663

[5] J. He, J.-Y. Nie, Y. Lu, and W. X. Zhao, “Position-aligned translation
model for citation recommendation,” in Proceedings of the 19th Interna-
tional Conference on String Processing and Information Retrieval, ser.
SPIRE’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 251–263.

[6] Q. He, D. Kifer, J. Pei, P. Mitra, and C. L. Giles, “Citation
recommendation without author supervision,” in Proceedings of the
Fourth ACM International Conference on Web Search and Data Mining,
ser. WSDM ’11. New York, NY, USA: ACM, 2011, pp. 755–764.
[Online]. Available: http://doi.acm.org/10.1145/1935826.1935926

[7] F. Isinkaye, Y. Folajimi, and B. Ojokoh, “Recommendation systems:
Principles, methods and evaluation,” Egyptian Informatics Journal,
vol. 16, no. 3, pp. 261 – 273, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1110866515000341

[8] K. Meehan, T. Lunney, K. Curran, and A. McCaughey, “Context-aware
intelligent recommendation system for tourism,” in Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2013 IEEE
International Conference on. IEEE, 2013, pp. 328–331.

[9] D. Adeniyi, Z. Wei, and Y. Yongquan, “Automated web usage data
mining and recommendation system using k-nearest neighbor (knn)
classification method,” Applied Computing and Informatics, vol. 12,
no. 1, pp. 90–108, 2016.

[10] R. Conforti, M. de Leoni, M. La Rosa, W. M. van der Aalst, and A. H.
ter Hofstede, “A recommendation system for predicting risks across
multiple business process instances,” Decision Support Systems, vol. 69,
pp. 1–19, 2015.

[11] M. D. Ekstrand, J. T. Riedl, J. A. Konstan et al., “Collaborative filtering
recommender systems,” Foundations and Trends® in Human–Computer
Interaction, vol. 4, no. 2, pp. 81–173, 2011.

[12] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,”
in The adaptive web. Springer, 2007, pp. 325–341.

[13] R. Yera Toledo and L. Martinez, “Fuzzy tools in recommender systems:
A survey,” vol. 10, pp. 776 – 803, 03 2017.

[14] R. Burke, “Hybrid recommender systems: Survey and experiments,”
User modeling and user-adapted interaction, vol. 12, no. 4, pp. 331–370,
2002.

[15] Z. Kubicek, “Movie manager,” 2014.
[16] M. Färber, C. Menne, and A. Harth, “A linked data wrapper for

crunchbase,” Semantic Web, no. Preprint, pp. 1–11, 2016.
[17] Z. Ivezic, A. J. Connelly, J. T. VanderPlas, and A. Gray, “Statistics, data

mining, and machine learningin astronomy,” Statistics, Data Mining,
and Machine Learningin Astronomy, by Z. Ivencic et al. Princeton, NJ:
Princeton University Press, 2014, 2014.

[18] K.-j. Kim and H. Ahn, “A recommender system using ga k-means clus-
tering in an online shopping market,” Expert systems with applications,
vol. 34, no. 2, pp. 1200–1209, 2008.

[19] M. R. Chmielewski and J. W. Grzymala-Busse, “Global discretization
of continuous attributes as preprocessing for machine learning,” Inter-
national journal of approximate reasoning, vol. 15, no. 4, pp. 319–331,
1996.

[20] L.-X. Wang and J. M. Mendel, “Generating fuzzy rules by learning
from examples,” IEEE Transactions on systems, man, and cybernetics,
vol. 22, no. 6, pp. 1414–1427, 1992.

[21] L.-X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability
Analysis. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994.

[22] L. Rutkowski, Computational intelligence: methods and techniques.
Springer Science & Business Media, 2008.

[23] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 19:1–19:19,
Dec. 2015. [Online]. Available: http://doi.acm.org/10.1145/2827872

[24] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[25] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[26] X. Zhang and Y. LeCun, “Text understanding from scratch,” arXiv
preprint arXiv:1502.01710, 2015.

[27] M. Cassel and F. Lima, “Evaluating one-hot encoding finite state
machines for seu reliability in sram-based fpgas,” in 12th IEEE Inter-
national On-Line Testing Symposium (IOLTS’06), 2006, pp. 139–144.

