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Abstract. This paper presents an application of the Zero-Order Takagi-
Sugeno-Kang method to explainable recommender systems. The method
is based on the Wang-Mendel and the Nozaki-Ishibuchi-Tanaka tech-
niques for the generation of fuzzy rules, and it is best suited to pre-
dict users’ ratings. The model can be optimized using the Grey Wolf
Optimizer without affecting the interpretability. The performance of the
methods has been shown using the MovieLens 10M dataset.
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1 Introduction

In recent years, there have been many attempts to add explainability and trans-
parency to machine learning models [1,5]. However, not so many papers have
been published regarding explainability in recommender systems.

A recommender (or recommendation) system is any system that offers items
in a personalized way to a specific user or guides him to the product best suited to
his profile. There are three general types of recommender systems - collaborative
filtering, content-based and hybrid approach [2,13,19].

Collaborative filtering systems recommend items by identifying other users
with similar taste disregarding attributes of considered objects. Content-based
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recommender systems analyze the attributes of considered objects, therefore
they do not need any information about other users’ preferences. Hybrid app-
roach combines many different recommendation methods. For the purpose of this
paper, we focus on content-based recommender systems. Collaborative filtering
uses similarity to other people and has two downsides. One is that it requires
many ratings from different users, otherwise, the algorithm would face so-called
cold-start problem. The other problem is that from the explainability perspec-
tive it is not enough to say that a recommender system recommends something
because other people like it too. With the content-based approach, the challenge
is to analyze items that user rated before, prepare the profile of preferences and
recommend new items based on this knowledge. The goal of our research is to
provide not only recommendations but also explanations. We believe that to
achieve truly explainable system it has to be interpretable and transparent [9].

As presented in previous work [17], it is possible to use rule-based [10,14] rec-
ommender systems to achieve explainability without losing too much accuracy.
Such a system is usually based on fuzzy logic [3,16]. As rules are by definition
interpretable by humans, they can be used to generate explanations. However, it
is not trivial to generate rules from examples, reduce them and optimize [15]. In
this paper, we propose a new method derived from Wang-Mendel and Nozaki-
Ishibuchi-Tanaka methods, combined with the Zero-Order Takagi-Sugeno-Kang
fuzzy system. It allows to deal with singleton outputs, which can be further
optimized using Wolf Grey Optimizer. All experiments use the MovieLens 10M
dataset.

Structure of the paper is as follows: Sect. 2 contains a description of rule
generation methods, Sect. 3 presents a proposed approach, Sect. 4 shows the
simulation results and the conclusions are drawn in Sect. 5.

2 Rule Generation Methods

In this section, the basic methods of generating fuzzy rules from data have been
presented.

2.1 Wang-Mendel Method

In the Wang-Mendel method fuzzy rules are created as follows:

Rj : IF x1 IS A1,inpj,1 AND ... AND
xn IS An,inpj,n

THEN y IS Boutj
, (1)

where Rj stands for j-th fuzzy rule, j is fuzzy rule index (j = 1, ...,M), M is
the number of fuzzy rules (initial number of fuzzy rules is equal to the number
of data set samples), xi stands for fuzzy system inputs (i = 1, ..., n), n is the
number of fuzzy system inputs, y is fuzzy system output, Ai,l stand for input
fuzzy sets where i indicates the index of system input and l indicates the index
of fuzzy set in i-th input (l = 1, ...,m), m is the number of fuzzy partitions,
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Bl stands for output fuzzy sets, and indexes inpj,i and outj indicates the fuzzy
sets from corresponding inputs and outputs, which are selected as follows:

μAi,inpj,i
(x̄j,i) = max

l=1,...,m

{
μAi,l

(x̄j,i)
}

, (2)

μBoutj
(ȳj) = max

l=1,...,m
{μBl

(ȳj)} , (3)

where x̄j,i stands for data set input values, ȳj stand for data set output values,
μA(·) and μB(·) are membership functions of corresponding fuzzy sets.

The initial fuzzy rule base in form of (1) is subject to reduction. For this
process for each j-th fuzzy rule an importance degree is calculated:

λj (x̄j , ȳj) = T
{

μBoutj
(ȳj) , μA1,inpj,1

(x̄j,1) , ..., μAn,inpj,n
(x̄j,n)

}
, (4)

where T stands for algebraic t-norm operator. The final rule base is obtained by
reducing conflicting rules (with equal values of inpj,i and different values of outj)
and identical rules (with equal values of inpj,i and outj). During the reduction,
only rules with the highest value of (4) are kept and thus the final rule base
contain K fuzzy rules (K ≤ M).

2.2 Nozaki-Ishibuchi-Tanaka Method

In the Nozaki-Ishibuchi-Tanaka method fuzzy rules also have form of (1). How-
ever, instead of calculating outj indexes by Eq. (3) for each fuzzy rule singletons
sj are calculated as follows:

sj =

M∑

j=1

τj (x̄j)
α · yj

M∑

j=1

τj (x̄j)
α

, (5)

where α > 0 is a parameter of the method (in this its value its selected as 1)
and the τj (x̄j) is the activation level of j-th fuzzy rule calculated as follows:

τj (x̄j) = T
{

μA1,inpj,1
(x̄j,1) , ..., μAn,inpj,n

(x̄j,n)
}

. (6)

The final rule base is obtained by reducing fuzzy rules with identical inputs
(with equal values of inpj,i and sk) after which K fuzzy rules remain (K ≤ M).
Finally, the outk indexes are selected as follows:

μBoutk
(sk) = max

l=1,...,m
{μBl

(sk)} . (7)

3 Proposed Method Description

The proposed method is based on the fuzzy rule generation methods with equally
(uniform) spaced partitions. Such an approach allows to obtain clear and read-
able fuzzy sets (see e.g. Fig. 1). The two methods are considered as a base meth-
ods: Wang-Mendel (WM) and Nozaki-Ishibuchi-Tanaka (NIT). On the basis of
WM and NIT methods, Mamdani fuzzy systems can be efficiently created.
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low medium high

Fig. 1. Example of equally spaced partitions

3.1 Zero-Order Takagi-Sugeno-Kang Fuzzy System

In this paper, we propose to use fuzzy system resulting from WM and NIT
methods in the form of Zero-Order Takagi-Sugeno-Kang (ZO-TSK) fuzzy system.
In such a system the output is calculated as follows:

y (x̄) =

K∑

k=1

vk · τk (x̄)

K∑

k=1

τk (x̄)
, (8)

vk are singleton positions (k = 1, ...,K), K stands for the number of fuzzy rules,
μk(·) stands for rule activation level calculated as in Eq. (6). The singletons are
numeric values as opposed to output fuzzy sets. Such an approach changes the
form of fuzzy rules to the following:

Rk : IF x1 IS A1,inpk,1 AND ... AND
xn IS An,inpk,n

THEN y = vk
. (9)

The use of numerical values in a fuzzy rule changes the way they can be
interpreted. However, the authors think that this is beneficial for a recommen-
dation systems in which the output value of the system is usually a numerical
value (e.g. movie rate).

In this paper, three ways to create a ZO-TSK system were used: WM-T
(where the singleton values are set as centers of output fuzzy sets of correspond-
ing rules from WM Mamdani type fuzzy system), NIT-T (where the singleton
values are set as centers of output fuzzy sets of corresponding rules from NIT
Mamdani type fuzzy system) and NIT-S (where the values of singletons as set
directly to sk values from NIT method) - see Fig. 2. Without any further opti-
mization, the WM-T system will behave identically to WM, and the NIT-T
system to NIT. In this paper, further modifications are considered, which is why
the names of these systems are distinguished.

3.2 System Optimization

The core of this paper is the assumption that singleton values can be optimized
without loss of the system interpretation. In order to get it, the ranges of sin-
gletons for each fuzzy rule are limited individually. The limitation results from
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low medium high

s1 s2 s3 s4y1 y2 y3

Fig. 2. Example of s values generated by NIT method that are used as singletons
values in NIT-S case and y values (centers of output fuzzy sets) used as singletons in
NIT-T case.

Fig. 3. Idea of the method proposed in this paper. It is worth noting that from one
output fuzzy set a different number of singletons can be created (equal to the number
of rules that are connected to a given set), double-sided arrows indicate the calculated
ranges < vk,min; vk,max > in which singletons can be optimized. The systems WM-T
and NIT-T are identical without further modifications of systems WM and NIT.

data set outputs of data set samples for which the highest activation level for a
specified fuzzy rule was achieved. The limitations are calculated as follows:

vk,min = min{
j∈{1,...,M}:μk(x̄z)= max

l=1,...,K
{μRl

(x̄j)}
} {ȳj} , (10)

vk,max = max{
j∈{1,...,M}:μk(x̄j)= max

l=1,...,K
{μRl

(x̄j)}
} {ȳj} . (11)

With this assumption, the ranges of values for each singleton are different
(vk,min and vk,max are calculated for each k-th fuzzy rule). In addition, narrowing
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the ranges to values resulting from the data should not cause loss of trust in the
system’s prediction.

The optimization of singleton values can be performed by any optimization
algorithm (see e.g. [4,18]). In this paper, a GWO is used to optimize WM-T,
NIT-T, and NIT-S systems and the optimized systems will be referred accord-
ingly as WM-T+S, NIT-T+S and NIT-S+S. The Grey Wolf Optimizer (GWO)
is a meta-heuristics inspired by leadership hierarchy and hunting procedure of
grey wolves in nature [11]. It has been successfully applied for solving various
optimization problems (see e.g. [8,12,20]). In this algorithm, the three best indi-
viduals (wolves) are called in sequence alpha (α), beta (β) and delta (δ). The
rest of the wolves are called omega (ω).

The modification (called hunting) of individuals parameters is performed only
for ω wolves. It is assumed that α, β and δ wolves have better knowledge about
the potential location of optimum (called prey). The hunting is performed as
follows:

Dα/β/δ =
∣
∣Cα/β/δ · Xα/β/δ − X

∣
∣ , (12)

X1/2/3 = Xα/β/δ − A1/2/3 · (
Dα/β/δ

)
, (13)

X (t + 1) =
1
3

(X1 + X2 + X3) , (14)

where X are individual parameters, Xα/β/δ are respectively parameters of best
wolves and Cα/β/δ and Aα/β/δ are calculated as follows:

A = 2 · a · r1 − a, (15)

C = 2 · r2, (16)

where r1 and r2 are random vectors in [0, 1] and component a linearly decreases
from 2 to 0 over the course of algorithm iterations. Such a procedure allows for a
smooth transition from exploration to exploitation and does not require setting
any real value parameters of the actual algorithm [6].

It is also worth adding that the other elements of the fuzzy system (e.g. fuzzy
sets) are not subject of optimization, which makes possible keeping the entire
fuzzy system and fuzzy sets in a clear form. The idea of the method proposed in
this paper is presented on Fig. 3. The proposed approach is new in the literature.

3.3 Data Set Preparation

The fuzzy systems used in this paper process the numeric parameters, however,
the recommendation systems often include inputs with nominal values. More-
over, multiple nominal values can be assigned to single item attribute. To process
such data, aggregation of nominal values was proposed in this paper. For each
user and each attribute of rated by user items a list of unique nominal values
is created. Then, the user preferences of each value are calculated as an aver-
age rate of the item that contains a particular value. Then, fuzzy system inputs
for nominal attributes are calculated as an average preference of all values that
occurs in a given attribute of an item (see Fig. 4).
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Examples from the database, for a user:
movie 1 - genre {action, comedy}, ..., user rate = 5.0
movie 2 - genre {drama, comedy}, ..., user rate = 4.0
movie 3 - genre {drama}, ..., user rate = 2.0
movie 4 - genre {action, drama}, ..., user rate = 3.0

Preference of attribute values for genre:
action - preference = (5.0 + 3.0) / 2 = 4.0
comedy - preference = (5.0 + 4.0) / 2 = 4.5
drama - preference = (4.0 + 2.0 + 3.0) / 3 = 3.0

Dataset prepared for the fuzzy system:
movie 1 - genre preference {4.25}, ..., user rate = 5.0
movie 2 - genre preference {3.75}, ..., user rate = 4.0
movie 3 - genre preference {3.00}, ..., user rate = 2.0
movie 4 - genre preference {3.50}, ..., user rate = 3.0

Fig. 4. Example of a dataset preparation for a user

It is worth to mention that the user’s rate of an item may result from prefer-
ences of various attributes, and therefore the values of specific system inputs will
not always be consistent with the rate of an item as is shown in Fig. 4. Moreover,
the proposed aggregation may result in the loss of some information (the user
may provide ratings based on attributes not included in the database and also
it is not possible to accurately detect the preferences of specific combinations
of values). Nevertheless, the proposed approach allows for the creation of fuzzy
rules detecting dependencies between preferences of attributes and also provides
very clear fuzzy rules (due to, among others, the low number of system inputs
created).

3.4 Summary of the Proposed Method

The proposed method: (a) can be based on fuzzy rules generation methods with
equally (uniform) spaced partitions, which allows obtaining clear and readable
fuzzy sets, (b) it is based on transforming fuzzy systems into Zero-Order Takagi-
Sugeno-Kang type, that are simple in interpretation, (c) it allows keeping trust
of system prediction optimizing only singleton values in limited ranges of values
calculated for each rule, (d) it uses recent and almost parameter-less optimization
algorithm, which allows getting good results, and (e) a data set preparation
method is used to create numeric inputs for the fuzzy system from nominal
values.

4 Simulations

In the simulations the following system were tested: WM-T, NIT-T, NIT-S, WM-
T+S, NIT-T+S, NIT-S+S. Moreover, a different numbers of fuzzy partitions
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Fig. 5. Diagram showing the proposed methods and process of performed simulations
for a single user.

were compared m = {3, 5}. A larger number of partitions would force to use
more linguistic variables (e.g. very very low) and thus significantly reduce the
transparency of fuzzy rules. In spite of this, only exemplary additional tests were
made to show the possibilities of the proposed approach with larger number of
partitions. The process of performed simulations for single user is presented in
Fig. 5.

The following parameters was set for all systems: triangular norms = alge-
braic, fuzzy sets = Gaussian type. The following parameters of GWO were set:
population size = 16, number of iterations = 100.

4.1 Data Set

For the simulations, a MovieLens 10m database is used [7], and three inputs are
prepared: genre preference (multiple nominal values), year (numeric values), key-
words preference (multiple nominal values). Moreover, a data sets were prepared
for first 100 users that rated more than 30 movies from the database.
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4.2 Results Verification

To verify the results for each simulation case 10-fold cross-validation was used.
This process applied to use different data set samples not only in learning and
testing phases but also using 90% of data samples (learning samples) for creating
fuzzy rule base using WM and NIT methods. Moreover, a different error mea-
sures were used: rmse (this measure was used to optimize the system), accuracy
(the predicted value was round to user rate and thus 10 different classes were
obtained), yesno (the output value was set to class 1 if prediction was lower than
average rate and to class 2 otherwise - such an approach is used e.g. in [17]). For
both accuracy and yesno typical classification accuracy were measured.

4.3 Simulation Results

The simulation results in details are presented in Table 1. An overview of rmse
depending on the amount of rated movies by users is presented in Table 2. The
fuzzy rules in simulations were created basing on data set samples, thus the
number of created fuzzy rules differ only for different users (for each user a
different data sets are created - see Sect. 3.3). The dependencies between the
number of fuzzy rules created for different groups of users are shown in average
in Fig. 6 and in details in Fig. 7. The optimization process is presented in Fig. 8.
Examples of the fuzzy system that allow to obtain best accuracy (NIT-S+S) are
shown in Table 3. Exemplary results of using a higher number of fuzzy partitions
are shown in Table 4.

Table 1. Simulation results in details, average stands for average results obtained for
all users, st. dev stands for standard deviation, lrn stands for learning samples, tst
stands for testing samples

m system rmse accuracy yesno

average st. dev. average st. dev. average st. dev.

lrn tst lrn tst lrn tst lrn tst lrn tst lrn tst

3 WM−T 0.368 0.424 0.057 0.182 55.38 50.89 7.03 10.76 94.78 93.12 3.31 8.49

NIT−T 0.317 0.376 0.028 0.160 59.29 54.53 4.95 10.45 96.19 94.61 2.37 7.10

NIT−S 0.350 0.438 0.018 0.167 53.92 45.74 4.66 10.21 96.54 93.23 1.39 8.25

WM−T+S 0.275 0.354 0.022 0.149 64.27 56.62 5.61 10.12 98.94 96.87 0.63 4.53

NIT−T+S 0.271 0.351 0.021 0.148 64.79 56.96 5.27 10.02 99.03 96.97 0.57 4.48

NIT−S+S 0.263 0.357 0.017 0.148 66.85 56.52 4.55 10.31 99.06 96.25 0.49 5.42

5 WM−T 0.206 0.327 0.016 0.151 79.53 65.23 3.96 9.55 98.68 96.93 0.60 4.54

NIT−T 0.202 0.323 0.014 0.153 80.55 66.22 3.55 9.56 98.91 97.11 0.47 4.45

NIT−S 0.174 0.321 0.011 0.157 84.92 66.14 2.40 9.38 99.42 96.94 0.26 4.60

WM−T+S 0.144 0.289 0.011 0.149 89.19 71.30 2.08 9.14 99.74 97.96 0.17 3.22

NIT−T+S 0.142 0.288 0.010 0.149 89.46 71.28 2.14 9.21 99.77 97.99 0.17 3.16

NIT−S+S 0.132 0.288 0.010 0.150 90.68 70.85 1.73 9.18 99.79 97.97 0.10 3.19
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Table 2. rmse results in details with the division of users by the number of rated
movies (o)

m system learning samples testing samples

o < 50 50 ≤
o <
100

100 ≤
o < 200

200 ≤
o <
400

o ≥ 400 o < 50 50 ≤
o <
100

100 ≤
o <
200

200 ≤
o <
400

o ≥ 400

3 WM-T 0.352 0.350 0.377 0.418 0.406 0.463 0.409 0.415 0.435 0.419

NIT-T 0.327 0.296 0.323 0.346 0.353 0.429 0.365 0.363 0.360 0.368

NIT-S 0.289 0.328 0.377 0.425 0.480 0.442 0.435 0.427 0.452 0.504

WM-T+S 0.266 0.253 0.294 0.303 0.330 0.402 0.347 0.344 0.323 0.352

NIT-T+S 0.260 0.250 0.290 0.300 0.324 0.398 0.345 0.340 0.320 0.349

NIT-S+S 0.230 0.240 0.289 0.310 0.345 0.394 0.354 0.344 0.337 0.370

5 WM-T 0.159 0.184 0.237 0.258 0.302 0.349 0.327 0.322 0.302 0.330

NIT-T 0.157 0.178 0.233 0.258 0.297 0.347 0.323 0.315 0.303 0.323

NIT-S 0.099 0.156 0.213 0.234 0.289 0.339 0.327 0.313 0.291 0.326

WM-T+S 0.092 0.126 0.178 0.193 0.225 0.321 0.294 0.279 0.251 0.267

NIT-T+S 0.092 0.124 0.175 0.188 0.219 0.322 0.292 0.277 0.251 0.260

NIT-S+S 0.070 0.114 0.168 0.186 0.222 0.317 0.295 0.277 0.252 0.266

Fig. 6. A number of fuzzy rules created with the division of users by the number of
rated movies (o)

Fig. 7. Correlation between a number of rated movies (o) and a number of fuzzy rules
created on prepared data sets, PCC stands for the Pearson Correlation Coefficient
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4.4 Simulation Conclusions

The optimization of singleton parameters in specified ranges allow obtaining
another increase in system accuracy (see WM-T+S, NIT-T+S, and NIT-S+S
systems in Table 1).

The best rmse, accuracy and yesno were obtained for NIT-S+S system,
where initial singleton positions resulted from the values sk calculated by NIT
method (see NIT-S+S system in Table 1).

The proposed solution allowed to achieve very high yesno recommendation
accuracy (at level of 98% for testing data samples) and high classification accu-
racy of predicting exact user rate of the movie (72%) - see Table 1. In the latter,
the increase in accuracy comparing to standard WM-T and NIT-T methods is
higher than 5% (see Table 1).

Fig. 8. Average rmse improvement during iterations of GWO
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Table 3. Example of fuzzy system for NIT-S+S obtained for user 127 that rated 192
movies for m = 3 (left part of table) m = 5 (right part of table).

The use of more partitions (m = 5) allowed to increase the accuracy of
the system in every case (see Table 1), thus the number of created fuzzy rules
increased (see Fig. 6).

The use of a higher number of partitions does not give a significant improve-
ment of testing rmse, accuracy and yesno, especially if m > 7 (see Table 4).
However, this results in more rules and the need to differentiate between more
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Table 4. Additional comparison of results for NIT-S+S system with a higher number
of fuzzy partitions.

m rmse accuracy yesno rules

average st. dev. average st. dev. average st. dev.

learn. test. learn. test. learn. test. learn. test. learn. test. learn. test.

3 0.263 0.357 0.017 0.148 66.85 56.52 4.55 10.31 99.06 96.25 0.49 5.42 10.87

5 0.132 0.288 0.010 0.150 90.68 70.85 1.73 9.18 99.79 97.97 0.10 3.19 21.78

7 0.081 0.273 0.009 0.168 95.54 74.05 0.91 8.73 99.88 97.43 0.03 4.03 29.14

9 0.051 0.270 0.006 0.178 97.98 75.72 0.43 8.11 99.92 97.18 0.02 4.45 35.20

11 0.039 0.273 0.005 0.188 98.62 75.68 0.34 8.26 99.97 97.13 0.01 4.41 38.79

13 0.029 0.272 0.005 0.191 98.96 76.36 0.27 7.80 99.98 97.23 0.01 4.34 41.86

linguistic labels of fuzzy sets, which significantly reduces the interpretability and
readability of the system.

The rmse error calculated for learning samples increases simultaneously with
the number of rated movies (see Table 2). This may be due to many factors:
ratings based on attributes not included in the inputs, contradictions included
in the user’s ratings, use of proposed data set preparation method, etc.

The rmse calculated for unknown data samples (testing samples) is optimal
in the case of 100–400 rated movies (in particular if m = 5 - see Table 2). This
shows that the optimal number of rated movies for which there is no loss of
information is contained in this range. Too many rated movies cause that the
system has a too weak structure and would require to increase m or use of
additional system inputs. Too few rated movies make it difficult to predict the
correct recommendation for testing samples (see Table 2).

The number of fuzzy rules increases logarithmically along with the number
of rated movies (see Fig. 6). The average number of fuzzy rules for m = 3 is
close to 12, such a number may allow interpretation of the operation of the
entire system. In the case of m = 5 average number of fuzzy rules is close to 28
and thus the interpretation of the operation of the entire system may be more
difficult, which does not exclude the possibility of the interpretation of specific
recommendations.

The correlation between the number of rated movies (o) and the number of
created fuzzy rules according to the Pearson Correlation Coefficient is moderate
in case of m = 3 and strong in case of m = 5 (see Fig. 7).

In simulation studies, the phenomenon of overfitting was not observed (see
Fig. 8). Moreover, learning rmse usually decreased to the same extent as testing
rmse (see Fig. 8).

It can be concluded that the exemplary fuzzy systems presented seem to be
clear and interpretable at the same time ensuring high accuracy of operation
(see Table 3).
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Sample interpretations that can be drawn from the fuzzy rules presented in
Table 3 are as follows: the user prefer older movies in some cases (see user rate
for k = 3 and k = 4), the genre preference is less important for the user than
keywords preference (see user rate for k = 1 and k = 5 vs k = 6), the keywords
preference does not affect the result linearly (see user rate for k = 5, k = 6 and
k = 7), etc.

Authors want to draw attention to the fact that interpreting results is much
harder in the case of m = 5. It is worth noting, that the interpretations do not
matter from the point of view of the explanation of specific recommendations
and are given here as an example. In the case of specific recommendations, the
user should only analyze these fuzzy rules that have influenced the result of the
recommendation. Such solutions will be considered and analyzed in future work.

5 Conclusions

The proposed approach allows achieving high accuracy with a reasonable number
of interpretable fuzzy rules. The use of ZO-TSK and optimization of singletons
has allowed a significant improvement in results.

Conducted experiments proved that applying the Grey Wolf Optimizer to
train the model gives better accuracy without losing interpretability of the sys-
tem. The Zero-Order Takagi-Sugeno-Kang fuzzy system can be effectively used
as a content-based recommender system that provides accurate results with
intepretability, transparency, and explainability.
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